US ERA ARCHIVE DOCUMENT

Performance Indicators Lessons Learned From Environmental Monitoring

Jay Messer
U.S. EPA - National Center for
Environmental Assessment

So what is an environmental engineer doing here?

Broad Accountability EPA's Report on the Environment

- Focuses on long-term, big picture trends in air, water, land, health, and eco.
- Indicators are not tied to specific programs or shortterm management objectives

Focused Accountability EPA's Strategic Plan & Performance Reports

- EPA Strategic Plan
 - Sets EPA's goals and 5-year performance objectives.
- EPA Annual Performance Reports
 - Reports on achievement of performance objectives.

Government Performance and Results Act (GPRA)

- Establish performance goals to define the level of performance to be achieved by a program activity
- Express goals in an objective, quantifiable, and measurable form
- Establish performance indicators to measure the relevant outputs, service levels, and outcomes of each activity
- Provide a basis for comparing actual program results with the established performance goals
- Describe the means used to verify and validate the measured values

Population Distributions

Changes in Uptake

and/or Assimilation

Indicators of Long-Term

Environmental Outcomes

Level 5

Changes in Health,

Ecology or

other Effects

Level 6

Changes in Exposure

Changes in

Environmental

Concentrations

Level 4

Indication of Intermediate

Environmental Outcomes

Changes in Emissions

or Stressors

Level 3

.. is not the same as the Logic Model

Program Design Proceeds from Right to Left

Program Evaluation Proceeds from Left to Right

RESEARCH & DEVELOPMENT

Will any old performance indicator do?

© Scott Adams, Inc./Dist. by UFS, Inc.

What makes a good performance indicator?

- Important
- Specific to action
- Sensitive
- Representative
- Acceptable measurement uncertainty
- Timely results
- Appropriate scale
- Careful around elephants

An important example Stratospheric Ozone

Shorter term outcome anticipates longer term outcome

^aTotal ozone refers to the total ozone concentration in a column of air between the Earth's surface and the top of the atmosphere.

^bTrend data are representative of latitudes ranging from 35 degrees North to 60 degrees North.

Data source: 1965-2003 data from WMO et al., 2003, and 2004-2005 data from unpublished results provided by WMO

Exhibit 2-44. Global effective equivalent chlorine concentrations, 1995-2005^a

^aEffective equivalent chlorine (EECI) is typically used to represent atmospheric concentrations of ozone-depleting substances. The EECI reflects contributions from multiple ozone-depleting substances, weighted by their potential to catalyze the destruction of stratospheric ozone.

Data source: NOAA/ESRL/GMD, 2006

Another important example Acid rain

- How many lakes and streams in the U.S. were acidic because of acid deposition?
 - National Surface Water Survey (probability sample in geologically sensitive areas)
- How many would be expected to recover or get worse under different SOX and NOX emission scenarios?
 - Direct-Delayed response model
- How many actually did recover or get worse after controls were put into place?
 - TIME/LTM program

Exhibit 2-33. Total sulfur deposition in the eastern United States, 1990-2005^a

^aCoverage: 34 monitoring sites in the eastern United States.

Data source: MACTEC Engineering and Consulting, Inc., 2006

Shorter term outcomes anticipate longer-term outcomes

Another important example - Surface Waters

- How many acres/miles of surface waters are in good condition, and what are the trends over time?
 - National Coastal Condition Assessment
 - Wadeable Streams Assessment
 - More to come (large rivers, lakes, wetland condition)
- Probability sampling to insure representative results
- Emphasis not just on chemistry but also biological community structure

Probability sampling

Dissolved Oxygen in Gulf Coast Estuaries 1991-1994

Despite diurnal oxygen fluctuations, annual frequency distributions are similar

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Representative sample Wadeable stream indicators

Comparisons with stream non-representative 305(b) reports

Example of lack of comparability in state water quality data

Sensitivity SAV in Chesapeake Bay

By 2008, SAV will increase to 120,000 acres

Specific to management action? Relationships between infant mortality rate and stream degradation

Probability of IMR Exceeding National Norm for 1989-1998

Percent of County's Stream Miles that are Degraded

Let's also take a look at some more examples of regional variability

Regional differences in impact Loss of native fish species

Regional differences and accountability targets Coastal condition indicators

By 2008, increase all indices by 2%

Measurement uncertainty Gulf of Mexico Coastal Indicators

Measurement uncertainty Power to detect a trend or achieve a target in two lake indicators

The power to detect a 2% peryear trend in Secchi transparency and zooplankton species richness with a sample size of 50 lakes per year. Data were generated from the 1991-1994 EMAP lakes study in New England.

Regional differences in stressors Estuarine Benthic Invertebrate IBI

Condition

Stressors Associated with Degraded Condition

Regional
differences in a
pollutantspecific
response
indicator

Ozone injury to forest plants

Exhibit 2-15. Ozone injury to forest plants in the U.S. by EPA Region, 2002a,b Degree of injury: None Moderate High Severe Percent of monitoring sites in each category: Region 1 68.5 (54 sites) Region 2 61.9 (42 sites) Region 3 55.9 18.0 7.2 4.5 (111 sites) Region 4 75.3 (227 sites) Region 5 75.6 18.3 (180 sites) Region 6 94.9 5.1 (59 sites) Region 7 9.5 3.2 85.7 (63 sites) Region 8 100.0 (72 sites) Region 9 12.5 8.8 76.3 (80 sites) Region 10 100.0 (57 sites) **EPA Regions** ^aCoverage: 945 monitoring sites, located in 41 states. ^bTotals may not add to 100% due to rounding. Data source: USDA Forest Service, 2006

Do indicators scale by hierarchy?

Boundary Conditions

Focal Level

Initiating Conditions

Hierarchy and Scale

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Importance of indicator scale

National trends may mask important regional,

state, and local variation

- Are we concerned about
 - a family?
 - a community?
 - a state or region?
 - A nation?
 - the globe?

Each concern may require an indicator or performance measure with a time and space scale that is "just right."

Scale of outcomes Global sea surface temperature

Coverage: Anomaly with respect to the 1971-2000 climate normal, which is plotted as zero.

Data source: NOAA, 2007b

Scale of accountability targets Regional safety of public water supplies

^aCoverage: U.S. residents served by Community Water Systems (CWS) (approximately 95% of the total U.S. population).

^bBased on reported violations of the standards in effect in any given year.

Data source: U.S. EPA, 2007

Scale of restoration targets

Local - Brasstown Creek, NC Stream restoration

Year	EPT	BI	State bioclassification
1994	18		Fair
1999	44	4.6	Good
2004	53	4.8	Excellent

Scale - national

urbonization

Exhibit 4-5. Land use trends in the U.S., 1977-2003

Data source: Lubowski, et al., 2006; Smith et al., 2004; USDA NASS, 2004; USDA NRCS, 2007

^aSee box in text for definitions of land use categories.

Scale - local urbanization

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Importance of elephants (large facilities)

Importance of large facilities

Trends in Health-Based Violations at Community Water Systems

Importance of large facilities Trends in TRI Releases to Land (1988 core chemicals)

Take Home Messages

- When constructing performance indicators -
 - Consider their importance, sensitivity, measurement uncertainty, timeliness, and representativeness
 - Consider the potential importance of scale and hierarchy
 - Watch out for the elephants!

Or else

